Anomaly-based detection using synergetic neural network
نویسنده
چکیده
Network traffic anomaly detection has become a popular research tendency, as it can detect new type attacks in real time. However, the network traffic appears as a complex dynamic system, causing by the collaboration of many network factors. Although various methods have been proposed to detect anomalies, they are mostly based on the traditional statistical physics. In these methods, all factors are integrated to analyze the variation of the network traffic. But in fact, the changing trend of the network traffic at some moment is only determined by a few primary factors. This paper presents a non-statistical network traffic anomaly detection method based on the synergetic neural networks. In our method, a synergetic dynamic equation based on the order parameters is used to describe the complex behavior of the network traffic system. When the synergetic dynamic equation is evolved, only the order parameter determined by the primary factors can converge to 1. Therefore, the network traffic anomaly can be detected by referring to the primary factors. We evaluate our approach using the intrusion evaluation data set of the network traffic provided by the defense advanced research projects agency (DARPA). Experiment results show that our approach can effectively detect the network anomaly and achieve high detection probability and low false alarms rate.
منابع مشابه
Anomaly-based Web Attack Detection: The Application of Deep Neural Network Seq2Seq With Attention Mechanism
Today, the use of the Internet and Internet sites has been an integrated part of the people’s lives, and most activities and important data are in the Internet websites. Thus, attempts to intrude into these websites have grown exponentially. Intrusion detection systems (IDS) of web attacks are an approach to protect users. But, these systems are suffering from such drawbacks as low accuracy in ...
متن کاملAnomaly secure detection methods by analyzing dynamic characteristics of the network traffic in cloud communications
Cloud computing represents a new paradigm where computing resources are offered as services in the world via communication Internet. As many new types of attacks are arising at a high frequency, the cloud computing services are exposed to an increasing amount of security threats. To reduce security risks, two approaches of the network traffic anomaly detection in cloud communications have been ...
متن کاملراهکار ترکیبی نوین جهت تشخیص نفوذ در شبکههای کامپیوتری با استفاده از الگوریتم-های هوش محاسباتی
In this paper, a novel hybrid method is proposed for intrusion detection in computer networks using combination of misuse-based and anomaly-based detection models with the aim of performance improvement. In the proposed hybrid approach, a set of algorithms and models is employed. The selection of input features is performed using shuffled frog-leaping (SFL) algorithm. The misuse detection modul...
متن کاملFace Detection with methods based on color by using Artificial Neural Network
The face Detection methodsis used in order to provide security. The mentioned methods problems are that it cannot be categorized because of the great differences and varieties in the face of individuals. In this paper, face Detection methods has been presented for overcoming upon these problems based on skin color datum. The researcher gathered a face database of 30 individuals consisting of ov...
متن کاملA Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کامل